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v I. Introduction H,jli/ i
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In this lecture I am going to outline some of the early ideas about
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transonic flow with which Hans W. Liepmann was associated and show how they
look in light of later developments.

The earliest ideas on transonic flow can be traced back to studies on
gasdynamics. Chaplygin's paper1 in 1902 treated planar gas jets by the
hodograph method. Modern theoretical work connected to aeronautics dates from
the papers of von Karman2, Guderley3, and Frankl who all derived the approx-
imate equation of transonic flow around 1946. Early experimental work was
carried out by Stack and Dryden at NASA Langley in the early '40's. Karman's
paper represented the velocity potential ¢ for flow past an airfoil (as in
Fig. 1) as a uniform flow at the critical speed a* plus a small disturbencz
o (x,¥)

¢ = d* i +¢(igy) 3

Assuming that, because of the transonic nature of the flow, 2_ >> 3_

ax y
Karman derived the equation
T e’
(v41) $X ¢ - = ¢ - (1)
a XX Yy
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This basic nonlinear equation of changing type is at the heart of all

transonic theory. Karman also noted the similarity parameter

(effectively)
1-M2 .
K=—__~_ &=1/c , M=Y_= Mach number at infinity = flight speed (2)
§2/3 ® . sound speed

and gave scaling rules for airfoil flows. Liepmann, Ashkenas, and Cole gave

a more detailed derivation as well showing how including compression viscosity
can yield a viscous transonic equation which can have smooth solution even when
shocks are present. The shocks were shown to be thin, Reg = Reynolds' number of
the shock = 1.

Topics of considerable interest were the possibility of obtaining shock
free mixed subsonic-supersonic flows by the use of the hodograph method and the
physical significance of the limiting line; also the effects of the viscous
boundary layer on the inviscid flow, especially in shock wave-boundary layer
interactions. These are discussed below.

Another significant achievement of von Karman's was to bring Hans W.
Liepmann to Caltech where he stimulated and influenced a whole generation of
students and created an early interest in transonic flow.

II. Transonic Small-Disturbance Theory

The equations of transonic small-disturbance (TSD) theory can be regarded J
as part of systematic limit process expansion. The starting point is the Euler
equation of inviscid compressible flow and the Rankine-Hugoniot jump conditions
for shock waves, including the condition that the entropy increase. A typical

geometry is shown (in transonic coordinates) in Fig. 2 where a vortex sheet

trails downstream of the lifting wing. The asymptotic expansion has the formd
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%, (1 + 82/3 u(x,7.3;K) + 64/3 up + ') ?x +5v+853 %,
>
+ 00, v o= (v,w) (3)

B_ =1+ 62/3 p+ ' p_ =1+ 62/3 g + '

(Y P

The 1imit process has § + 0, M2 = 1 - K82/3 » 1 with (x,y = 61/3y, z = §1/3z,

1-M2
K = .?73. fixed). Lengths are measured in terms of the typical wing chord c.
6
The span b should grow as 6§ + 0 such that B = bs§1/3 is fixed. Timman6, and
Krupp and Cole’ showed how the ideas can be extended to unsteady flow with

a dimensionless time coordinate
ARTILEN (4)
c

The representative point (x,y,z) runs far from the body as (§ + 0, M, + 1)
for fixed (x,;,;) to express the fact of large lateral extent of disturbances

near M_= 1. When the limit process expansion is substituted into the basic Euler

- o o

system it is shown that to this order, a disturbance potential ¢(x,y,z,t) exists

such that

LV =V, V= () (5)
' ay oz

U= Ox

This disturbance potential vanishes at upstream infinity and satisfies the basic

TSD eguation

¢

(K = (y+1)éx)éxx *+ ¥2¢ - 204 = 0 (6)

The pressure coefficient ¢ = P-PE is found from
Pl

Cp = -2 62/3¢x (7)




Some properties of the TSD equation are now summarized for steady flow in
two-dimensions

(K = (v+1)éox)éxx * ¢yy = 0 TSD eqn. (8)
The equation (8) is of changing type,

elliptic if (vy+l)ey < K

hyperbolic if (vy+l)éx > K
with flow that is locally subsonic or supersonic respectively. K = 0 corresponds
to sonic flow at infinity (M~= 1 ). The local Mach number Mz can be shown to be

given by

K - (Y+1)¢x =

The typical structure of flow at a high subsonic Mach number is shown in Fig. 3
where a local supersonic (hyperbolic) region appears over an airfoil. The

supersonic region contains Mach lines or hyperbolic characteristics given by

ay= _*1 ' (9)
dx /(y$1)¢x-x

and is terminated by a shock. The shock conditions are contained in the

conservation form corresponding to (8)
- X*l 42 )~ =
(o, rhe )x+ (65); =0 (10)

which is a version of the continuity equation. The shock is a discontinuity
surface across which ¢4, ¢y jump. The jump conditions are given by the

integrated form of (10) ’
- .
(ke - L1 0,245, - [ojlaxg = 0 (11a)

and the condition that ¢ is continuous

(¢ = 0 or [exldxs + [o71dys = 0 (11b)




Here (dxg, d}s) are line elements in the shock surface.
L J=jump=o()p-()as»( )p=quantity behind shock

( )a = quantity ahead of shock
Further the mass flux in the x-direction.

pq .
ﬁ=1+s4/3(mx-%l¢§)+“' (12)

'.l.[-"f.:-'l.‘l_":‘"-":-'@"i e S Cm. v Ve o »

so that there is a maximum flux at local sonic speed (c.f. Fig. 4). The maximum
of the mass flux corresponds to the fact that stream tubes have throats at local
Mach number one. The TSD equations thus contain all the essential features of
flow.

TII. Early GALCIT Experiments

A small transonic wind tunnel 2" x 20" was constructed in 1944-5 at GALCIT
by Hans W. Liepmann and a series of interesting experiments were carried out in
this facility?. Some of these are mentioned here and some in later sections.
Experimants were carried out in flow past a series of circular arc airfoils of
dimensions as in Fig. 5. Surface pressure distributions were re: .rded and
Schlieren pictures taken. Fig. 6 shows a typical pressure distribution at
zero angle of attack (a = 0). The local supersonic zone is shown clearly as is
the substantial difference of the flow with laminar and turbulent boundary layers

on the surface. Turbulence was induced with a trip wire. For the turbulent case

in which the boundary layer is thinner the shock wave terminating the sonic

region is seen clearly. These features are run also in the Schlieren photographs
£ .

reproduced in Fig. 7.

IV. Numerical Methods

At the time of these experiments no reliable numerical methods existed for
calculating the ideal flow, although Emmons carried out some relaxation

calculations for flows with local supersonic regions. Emmons' method however
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was inherently unstable and did not resolve shock waves. In the late 60's Emmons’
method was revised to eliminate these drawbacks® and since then the method has
undergone substantial development. The use of multigrids has speeded convergence
and the basic ideas have been extended to the Euler equations. Here we describe
the original idea and present the results of a few calculations. Finite dif-
ference methods are used to solve numerically the boundary value problem for ¢
corresponding to flow past an airfoil. The best results are obtained by using

the conservative form (8)

(Ko, - XL o2) + (43)5 = 0 (13)

x ~ 73 y

and a corresponding conservative finite difference form. The essential boundary

conditions are (i) tangent flow at the airfoil surface

¢9 (x, 02) = F;,z (x) 0<x<1 (14)

where y = 8F, ¢(x) represents the upper and lower surfaces respectively (ii)

vanishing of perturbations at infinity
¢x, ¢y *+ 0 Yx24y2 + (15)

(iii) Kutta condition that the flow leaves the trailing edge smoothly. In TSD

this requirement is equivalent to zero pressure loading at the tail or (c.f.7)

¢x(1!0+) = ¢x(1o0') (16)

. 4
The boundary value problem is shown in Fig. 8 where in addition it is noted

that there is a jump in ¢ across the wake

[6] = #(x,04) - ¢(x,0-) = T (17)

where f‘ =§u dx + v dy is the circulation. It is also noted that au asymptotic
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. far field exists which for subsonic flow has the form of a circulation
JT8 4 tuy ,6 = tan"t 'Ry (18)
A 5 X

Finite difference calculations are carried out on the (i,j) mesh indicated. A
conservative form is derived by considering fluxes around a central box. This
reasoning is extended so that the shock waves which appear spread over three or
four mesh points are consistent. For stability ;he difference scheme must be
chosen to be type sensitive. The solutions at (i,j) can be influenced only by
upstream points if the flow is locally supersonic (¢x > K/(y+1)), but by both
upstream and downstream points if the flow is locally subsonic. In the finite
difference approximations ¢x at (i,j) can be calculated from a centered formula
¢(c) involving (i+l, i-1) or a backward formula ¢£b) involving (i,i-2). When
t;ese agree an (i,j) can be designated subsonic or supersonic as indicated in Fig.
9. At subsonic points (13) provides an explicit equation for ¢ij in terms of
neighbors on all sides, the computational star in Fig. 9. For supersonic points
however an implicit scheme is used involving only upstream points. Two other
kinds of points denoted as "sonic", which applies for points near the sonic line
where the flow accelerates and “shock" which applies for points where the flow
decelerates to subsonic through a shock are shown,

Since the problem is non-linear the local state is not known in advance and
an iteration scheme is used. At a givern iteration the difference schemes are

chosen and the unknowns solved for on a vertical line. Sweeps are made in the

downstream direction. The analytical far field is used as a boundary condition but

the value of ¥ is adjusted as the trailing edge is passed. To speed convergence

the 1atest values are used whenever possible. The method converges well, gives the
correct shock jumps, and for lifting cases automatically satisfies the Kutta

condition.

N T Sy s
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Some results of calculations are shown in Fig. 10 and 11 for a parabolic
arc airfoil9 and a NACA 001210, For the first the sonic line and shock appear
as well as the surface pressure. Figure 12[9] shows the flow field features for
a higher freestream Mach number where the main shock has moved aft of the airfoil

and a fishtail shock pattern appears.
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V. Shock-free Supercritical Flows

-5

The possibility of shock free flows past airfoils with local supersonic
regions was of considerable interest in the early days of transonic research.
This was stimulated by Ringleb's exact hodograph solutionll, analogous to

incompressible flow around a half-plane, which has a smooth transonic region.

——— -~ B
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Experimentally it was possible to produce a small shock-free supersonic zone in
the flow around a simple shape. For example see Fig. 13 where some of Liepmann's
results are reproduced4.

Other exact solutions, analytical and numerical, were derived from hodogragh
considerations and gave shock free flow past special airfoil shapes. The hodogra:zh
equations are linear so that solutions can be obtained and the airfoil shape foun
later. For the TSD system tha hodograph eciations are obtained by a direct

interchange of dependent and independent viériables. Rewrite (8) as the system

wa = v:y'
(19)
wW,_ = vy
y
where
W (vrl)ey = K, v = (v+l)ey
Then [W;v = xw} (20)
Xy = YW
since w = ly etc, and J = Jacobian = 3(x,y . From this, it is seen
X J v d(w,v
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that fhe approximate stream function y(w,v) is given by a solution of Tricomi's
equation.

W.;vv - -;’ww =0 (21)

This is the simplest linear equation of mixed type, elliptic in the subsonic
region w < 0, hyperbolic in the supersonic regiqn w > 0. The exact potential
equation can be transformed in a similar way to produce Chaplygin's equation which
has properties analogous to (21).

Some special exact solutions for mixed flow past an airfoil were given by
Tomotika and Tamadal2. Recent advances have been the work of Nieuwlandl3
which used Chaplygin functions to represent analytically families of airfoils and
Garabedian and Kornl4 who use a finite-difference hodograph method to obtain
numerical solutions of airfoil flows. The latter empiny real characteristics in
the hyperbolic region and complex characateristics in the elliptic region and a
sufficient number of parameters to generate families of shapes with local subsonic
zones. A typical airfoil and its pressure distribution in shock free flow is
shown in Fig. 14. The pressure distribution is also calculated according to TSD
theory with a fully conservative relaxation scheme (FCR) as described in Sec. IV
and a non-conservative scheme (NCR)15, as well as a calculation of Garabedian,
Korn & Jamesonl®, The drag coefficient, which is theoretically zero (see next

section) is evaluated on several different control surfacesl5,

The smooth hodograph solutions are seen to be isolated solutions since a
smooth mixed flow can not be found when the boundary conditions in the physical
plane change slightly (Morawetzl7). An edrly paper of Guderleyl8 suggests a
singularity of a perturbation in the downstream corner of the sonic region. They
are isolated solutions in the same sense as the famous Busemann supersonic
biplane. When the conditions are changed slightly a neighboring solution is found

with a shock wave. An example of the calculation of such a flow appears in
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Fig. 15, where the shock wave is apparent. Experiments verify these features.
Guderley3 suggests that the shocks in the local supersonic region are
i initiated by an envelope formation of the compressive reflection of Mach lines
from the sonic line. A detailed look at the calculations of Fig. 10 verify this
idead. Thus a shock free airfoil is one in which the shape of the sonic line
is just right so that no envelope is formed.

VI. Shock Waves and Drag

The connection of shock waves and drag was made explicit by Liepmannl9
in 1950 with a study of linearized supersonic flow past an airfoil. By
considering the weak shock waves in such a flow a correction to the Mach angle was
made for shock angle and location and the formula was found

Drag/(length) = peTxf[S]dy (22)

shocks

where [S] = jump in specific entropy across a shock wave. Drag is related directly
to en*ropy production. Similar results appear later in works by von Karman?20
and Oswatitsch2l,

Analogous considerations apply to TSD flow. Germain2Z gave a derivation of
a drac formula for TSD theory starting from a local conservation law in two-

dimensions. The generalization to three-dimensional flow was given ind and

reads
(K%Z - vz;:wz - _Y_;_l u3)x + (UV)y + (uw)2 = ( (23)

’

This conservation law easily follows from the three-dimensional version of (8)
and the equation of irrotationality. The values of (uv) on y = 0 are

proportional to the incremental drag for a planar system since the pressure

increment is proportional to u and the wing slope to v. Integration of (23) over

......................

------------------------
.............

----------
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a control surface as shown in Fig. 16 yields a formula for drag. Since (23) is
not a physical global conservation law it is not conserved across shock waves.
Letting the control surface grow to infinity contributions from the shock and

vortex sheet remain. The result is

i D=__0rag = yim [J (24245 d7 - YL [ [ulidy dF (24)
p U268/3c2 xro @ 2 © 12

: ® vortex drag shocks

The first term of (24) is the familiar expression for vortex drag in terms of the

kinetic energy in the wake while the second term, the wave drag is a scaled

version of the Liepmann formula. [u] is the jump of éx across the shock and the

entropy change is proportional to [u]3. Thermodynamic considerations for weak

shocks show.

vff iy dF - e T, Jf SNy dz (25)
127 “shocks ®® ““shocks

It should be noted that these simple results do not carry over for stronger
shocks. The drag-entroupy formula (24) can be used to provide a check orn the

consistency of numerical TSD calculationslS, In Fig. (17) the shock and flow
field for a parabolic arc at My = .909 is shown. The [[u]3dy - [[cp]3dy is

plotted also and the drag coefficient is computed both from the surface

pressure integral and the entropy jump. The result is

Cp
Cp

.0315 surface pressure integration
(26)
.0320 shock entropy integration

’
Careful calculations of TSD flow enable the wave drag to be found. An example of
an application is the flow past an NACA 64A010 airfoil in a slotted wall wind-
tunnel. The drag rise due to shock wave formation (CD0 = friction drag) is

fairly well represented. See Fig. 18.

.......................
......
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VII. Sonic Flow and the Law of Stabilization

The flow at Mx = 1 has a special structure elucidated first by Guderley and
Frankl. In order to understand this flow consider first the sequence of flow
patterns past an airfoil or body at free stream Mach numbers close to one, Fig.
19. At high subsonic Mach numbers a large supersonic zone is formed terminated
by an oblique shock near the trailing edge and the fishtail shock, as calculated
in Fig. 12. At My = 1, the supersonic zone in the sequence of steady flows grows
to infinity and the fishtail shock goes to downstream infinity., A limit charac-
teristic or Mach wave appears which is asymptotically parallel to both the sonic
line and the tail shock at infinity. This limit characteristic divides the flow
field into an upstream and downstream part. Any (infinitesimal) disturbance in
the flow, in the supersonic region, for example, can send a disturbance downstream
which eventually reaches the sonic line and affects the entire subsonic region.
Any disturbance originating downstream of the limit characteristic can not affect
the upstream flow. The flow in the upstream section up to the limit characte--
istic thus has an elliptic nature and must be calculated all at once. It is
effectively independent of the flow dcwnstream of this charactaristic. Cownz:przam
of the 1imit characteristic the flow can, for example, be calculated as in a
hyperbolic region by the method of characteristics. When the free stream ta:crmas

slightly supersonic a detached shock wave which has subsonic flow behind near the
axis (y=0) appears ahead of the body. The flow becomes supersonic near the

airfoil and terminates again in an oblique tail shock. It can thus be noted that
the flow in the neighborhood of the body foes not change qualitatively very much
since the oncoming flow is élways close to a uniform subsonic flow. |

For My = 1, the far-field is a similarity solution. With K = 0 {8) becomes,

for the planar case

(y+1)dxdxx = ¢yy =0 (27)
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The far-field can be thought of as being produced by a singularity at the

origin and, due to non-linearity, represented in the form

— (28)
: (v+1)o(x,y) = ¥ 2 $(gsx), € = %.:
a one-parameter family of similarity solutions. " Thus note
(v+1)ox = ¥2<=2 f'(E) » (¥+1)éxx = ¥<-2 £*(€) (29)
f(€Ei;x) is thus found from
(f-_,‘252)f" - S5c(l-x)Ef' + 3(1-x)(3x-2)f=0, - ECE (30)

The coordinates are illustrated in Fig. 20. The flow must start at infinity
decelerating and spreading around the body, then accelerate through sonic and
smoothly through the limit characteristic. It can be seen from (29) that the
sonic line (f'=0) as well as the limit characteristic and tail shock must

lie on similarity curves £,EL, and Eg respectively. The characteris:ic.

condition (+) (29) becomes

f'(gL) = xzaf (31)

¢ also must be symmetric in y, the apparent thickness e ec= dominat'r~c lle
flow at infinity. This occurs because both acceleration and deceler:-i:a of a

sonic flow produces a widening of stream tutas (cf Fig. 4). One concuan:

of integration remains if integration is started at £ = - » and two ::nditions
.. ¢

must be satisfied at the limit characteristic if (g ) s ¢o be finite. Thus

the solution exists only for a special of x. Guderley showed from ti2

hodograph solution that

x = 4 planar case (32)

5

............. _.:- ..::_.
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and by numerical integration that « =.; for the analogous axisymmetric case.

The latter result was shown to be exact by various writers e.g.23. Eqn. (30)

has a group property so that the solution can be written

f(g) = 1_F(Ag), A = const. (33)
A3

The scale factor A depends on the size {and shaﬁe) of the body. Thus the
far-field can be standardized to have £ = 1. By considering shock jumps the
solution can be continued to downstream infinity. A particularly useful

representation of the solution was given parametrically by Franki24

f(s) . 313/5 s-l/s 1 .S +i3 , a, = 2933
2 3 1 55
. (34)
/5
E(s) = a; s-2/5(s -1
! 7

where the foliowing relationships are noted

£ -- 0 g* EL=1 £s

_ (35)
1 4/3 1 (5/3 + 8)
6

1
2

Frankl produced this result by clever observations about special hodograph

solutions; an analogous result has been derived by inspection in the

axisymmetric case.
A useful extension of the far-field (28) is to regard it as the first term

of an expansion of the form ¢

(re1do(x,3) = 525 Lo f(ag) « oo fothe) 4 ¢ 571 f1(ke) (36)
A A A

valid as y + = for £ fixed. The perturbation functions fj = g, i = 0, 1

satisfy the variational equation (with 9 = a)
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(f - 18 £2)g" + (£ +4 (2a - De)g' - ala - g = 0 (37)

If g = s-a/2 p(t), t s‘% s (37) becomes a standard hypergeometric equation

t{1-t)h* + (L - 1 (50 + 4)t)h* +5_q(5a - 2)h = 0 (38)
2 3 12
- @ i E i EL = 1 .
in the interval . The two linearly independent solutions
0<t<1l

around t = 0 are

= F(5 1l (2. . 1.
hl F(-i Q, -6- (2 5“)) ?)t)

(39)
1

hyp = t2 F(% (Sa+l), % (1-a)3 %;t)

Thus solutions smooth on passing through the limit characteristic are given by

the spectrum

0_:..._3,-_2_'-_];,0’_2_"8_'11’14...

1 5 5 5 5 5 5 ' § (40)
For the expansion near infinity ao = 0, 01 = -] and thke fj are simnle
functions.

The solutions just discucsed can be uzad to relate a flow with a
free-stream Mach number close to one to thct at Mach nurter one. In TS form
this relates a flow with small |K| to that with K = 0. For flow subsor : at
infinity the dominant term in the far-field is the circulation term, besically

the solution which decays most slcwly for’

K¢ + ¢ =0 ,¢+ - (41)

XX Yy

Mk
3
(o]

But for K = 0 the far-field is given by (26) with « = % . Thus there is a non-

uniformity at infinity of ¢(x,y;K) as K + 0 and inner and outer expansicns are
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needed. For the inner expansion valid near the airfoil the first term is sonic
flow past the airfoil and corrections are sought. In early work Liepmann and
Bryson25 proposed that at Ms = 1 the local Mach number on a body does not
change as the free stream Mach number changes near one because of the
qualitative ideas outlined above. The Law of Stabilization proposed by

Ryzhov and Lipschitz26 and the more detailed work of Cook and Ziegler2? following
the method of matched asymptotic expansion indicated in28 give a deeper and

more precise description of this Mach number freeze. The starting point is a
solution at M. = 1 and several are available, for example, for a wedge Guderley

and Yoshihara3 gave the result while Tse29 worked out lifting airfoils at

Mo = 1. Both of these methods rely on a hodograph formulation. Let ¢*(x,y)
represent the sonic flow past an airfoil with the far-field (28). Then the fiow
for K > 0 is represented as an inner expansion, generated from a limit process

K-+ 0, x,} fixed.

$0LY3K) = 47(xy) + K s e(K) g (xay) & (42)

e(K) is the order of magnitude of the correction which is sought and ¢c(x,y)
is the correction potential. ¢*(x,y) satisifes the sonic TSD eqn (25) and its

boundary conditions while ¢c(x.§) is found from the variational equation

*

(v+1)(0" oc. + o oc ) -0c--=0 (43)
X XX XX X

yy

’

The expansion (42) is not valid near infinity so that an outer expansion in

rescaled variables is sought

Q(X,;’,K) = ¢(K) s(ici) ¢ 100 (44)
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The associated limit process has X,y fixed as K » 0, x,y + = , that is

| X = u(K)x, ¥ = v(K)y u,v+0.
The condition that the rescaled equation be subsonic at infinity but still

nonlinear and of changing type produces a one parameter family of flows.

$(x,y) + ', with v = /K’ (45)

T RS smLelv st

q with the resulting version of the TSD equation

(1 = (y+1)dx)éxx + byy = 0 (46)

The inner and outer expansions must match and in a simple way as x,; > e
X,y + 0. ¢* is defined along similarity curves which then must match

a5 =%

« |1

RN
AN T

k2, x = K x,y = K5/2 y . The general form of the flow as it looks in

Thus u
outer variables is shown in Fig. 21. Higher terms in the flow near infinity
for the inner and the flow near the origin in the outer expansion (42),(45)
then depend on the spectrum associated with (37).

These expansions can then be written (with the scale factor A = 1)

¢(X,y K) = _.__..{yz/5 f(g) + ¢, + y -1/5 f.(g) + -..} + Kx
Y+l 0 1

Y+I
+ (K (x, )+ ' (472)
inner
1l 1 525 gy ek e, 5 ¥R + vl outer (47b)
K Y+ 1

A comparison of these two as X,y + 0, x,y + = along similarity curves shows that

¢1(x,y) has similarity form at infinity and that




.........

23

e(K) = K3 j}?'zigl (48)

This weak dependence on deviation from Mo, = 1, for the potential and

pressure distribution is the essential part of the law of stabilization. The

term X _éT in these expansions represents the change of the flow at infinity
Y
22

and adds a constant pressure level to the solution. Germain™" derived a

conservation law formula for the scale factor A relating it to properties of the
solution (not known in advance) on the body surface. Cook and Ziegler2’ have

extended these ideas to find Cl. The boundary value problem for the inner

correction solution is sketched in Fig. 22. An empirical fit of the Law of

30

Stabilization to some experimental drag measurements of Vincenti™" is drawn in

Fig.22.

Viil. <Concluding Remarks

TSD theory ard calculations have made great studies in the last 35 years
based on the work of the pioneers. The understanding of the physical phenomena
that has been thus achieved enables us to go forward with more elaborate
calculations and including more physical effects. One can only admire the deep
insight of the early workers in this area such as H.W. Liepmann,

“Research sponsored by the Air Force Office of Scientific Research, Air
Force Systems Command, USAF, under Contract/Grant No. AFQSR-82-0155. The United
States Government is authorized to reproduce and distribute reprints for Govern-

’
mental purposes notwithstanding any copyright notation thereon."
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